

Cyp L		FBRM methodology	٢
1994	Method to optimize particle size analyze	the polymer dosage for flocculation using the er (FBRM). Blanco et al. 1994, PhD thesis U.C.M	л
	Influence of closed Closed System-Three International. Leath	system on chemical flocculation" Towards the ats and Opportunities. Blanco, PIRA terhead, Inglaterra. 1 March 1994.	
	Flocculation contro Conference. San Fra	l in papermaking". TAPPI Papermakers ancisco, 24 April 1994.	
	Influence of salt on pulp fractions". TAF de abril de 1994.	the interaction of polymers with the different PI Papermakers Conference. San Francisco, 24	•
1996	FBRM as an alterna 49(2):113).	tive to ζ potential Blanco et al. 1996, Appita J	•
2002	FBRM to study the 2002, Tappi J. 1(10 26(3):95).	effect of DCM on flocculation Blanco et al.):14; Dunham et al. 2000, J. Pulp Pap. Sci.	
	Flocculation-defloco properties. Floccula 1(10):14; Blanco et	culation-reflocculation kinetics and floc tion of DCM Blanco et al., 2002, Tappi J. al. 2002; CJChE. 80(4)734).	
Ļ		Monash, 16 th August 20	18 15

	FBRM methodology	
2008	Separation of contaminants from deinking process water by dissolved air flotation: effect of flocculant charge density/ Miranda et al. 2008, Sep. Sci. Technol, 43(14):3732 Effect of fibre morphology on flocculation of fibre-cement	
2009	suspensions. Tonoli et al. 2009, Cem. Conc. Res., 39(11):1017 Influence of water quality in the efficiency of retention aids systems for the paper industry Ordoñez et al. 2009, Ind. Eng. Chem. Res, 48:10247. Influence of cationic starch adsorption on fiber flocculation Zakrajsek et al. 2009, Chem. Eng. Technol. 33(8):1259. Polymeric Branched Flocculant on Flocculation in the Papermaking Plane et al. 2000. Und For Ohem Bas 40(10):4826	
2009	Flocculation efficiency of chitosan for papermaking applications Nicu et al. 2013, Bioresources 8(1):768; Miranda et al. 2013 Chem.Eng.J, 231:304 Silica removal from newsprint mill effluents. Latour et al. CEJ	
2013	230:522-531 Influence of SS on silica removal by coagulation with aluminum	
2015	salts. Miranda et al. CCT 49,497-510 Optimization of silica removal with magnesium chloride in papermaking effluents: mechanistic and kinetic studies. ESPR 23(4) 3707-3717. Efficiency of polyaluminum nitrate sulphate-polyamine hybrid coagulants for silica removal. Desalin. Wat. Treat. 57(38), 17973- 17984.	
•	Monash, 16 th August 2018	17

	What is optim	num flocculation?	•							
Cualitative relationships between flocs and papermaking processes										
	INFLUENCE	POSITIVE								
	PROCESS Drainage (foils)	Big and compact flocs								
	Drainage (vacuum)	Small and compact flocs								
	Drainage (press) Retention	Soft flocs Fiber-filler flocs								
	PRODUCT Formation	Small and compact flocs								
	Porosity	Small flocs								
	Strength	Small flocs								
		Monash, 16 th Aug	r <mark>ust 2018</mark> 28							

West International Contraction	Case 2										
9	INGENIERÍA QUÍ	MICA	S	Selec	tion	of ret	enti	on sy	stem	เร	No.
rials V	/ariable		RS A			RS B			RS C		Errors
18/05/04	Dosage	Low	Medium	High	Low	Medium	High	Low	Medium	High	
D	Drain Time	19,5	18,3	14,3	28,7	28,5	14,7	15,0	8,3	9,7	Low
Т	urbidity	5943	3460	3910	4260	3485	1692	2379	2228	2992	Very Low
T	otal Retention	89,4%	86,1%	85,6%	80,4%	84,1%	89,2%	90,2%	91,9%	89,6%	Medium
RS DDJ A	sh Retention	82,1%	77,1%	73,1%	71,0%	78,6%	80,7%	85,2%	85,0%	78,8%	Low
D	Drainage Time	-1	1	2	-1	-1	-1	-1	0	1	Very Low
RS DDA P	Permeability	0	-1	-1	0	0	0	1	0	0	High
Т	urbidity	3480	2611	2413	2681	3120	1942	2889	2192	1807	Low
C	D	79,9	85,4	63,5	49,8	70,3	65,2	86,6	81,5	68,0	Low
C	COD	411	415	392	393	413	426	412	406	444	Too High
G	Grammage	53,04	51,65	54,18	55,46	55,02	58,20	53,25	56,55	59,68	Low
R	Retention	66,2%	64,2%	67,3%	69,4%	68,7%	72,6%	66,3%	70,6%	74,5%	Low
F	orm Index	27,37	24,75	21,63	26,05	25,13	20,53	27,40	23,73	20,73	Low
H	IST DEV IF	5,68	6,33	7,02	5,78	6,10	7,48	5,57	6,44	7,24	Very Low
RS RET A	Ash Content										Very Low
V	/ res	108	133	104	172	143	134	173	157	138	Medium
т	otal area	1598	2043	1898	2315	2091	1947	2470	2231	1992	Low
A	Area >Tmax	1454	1874	1734	2146	1928	1782	2299	2066	1834	Medium
%	6Area >Tmax	91,0%	91,8%	91,3%	92,7%	92,2%	91,5%	93,1%	92,6%	92,1%	Low
G	Grammage	54,36	52,55	50,81	58,87	53,06	57,43	57,79	61,09	57,91	High
т	otal Retention	67,7%	65,0%	63,1%	73,1%	65,7%	72,1%	71,6%	76,3%	74,3%	Medium
F	orm Index	25,9	34,5	35,9	26,1	29,5	28,0	24,6	23,8	26,8	Low
н	IST DEV IF	6,3	4,5	4,2	5,7	5,2	5,5	6,1	6,6	5,6	Low
<u>A</u>	Ash Content	24,5%	20,5%	21,9%	26,5%	23,9%		26,7%	27,9%	-	Very Low
RS DRAIN D	D2TM	2	6	1	4	5	5	2	3	8	Low
D	041M	3,5	4,5	5,5	3	3,5	4		4,5	6,5	Very Low
RS FBRM	04 FN	3,8	4,5	4,8	3,8	4	4,3		5	6	Very Low

Cyp			Case 2 Selection of retention system								
Trials	Variable		RS A			RS B			RS C		Errors
18/05/2004	Dosage	Low	Medium	High	Low	Medium	High	Low	Medium	High	
RS DDJ	Drain Time	19,5	18,3	14,3	28,7	28,5	14,7	15,0	8,3	9,7	Low
	Turbidity	5943	3460	3910	4260	3485	1692	2379	2228	2992	Very Low
RS DDA	Drainage Time	4,1	4,3	4,1	4,2	3,8	3,5	3,9	3,3	3	Very Low
	Turbidity	3480	2611	2413	2681	3120	1942	2889	2192	1807	Low
RS RET	Retention	66,2%	64,2%	67,3%	69,4%	68,7%	72,6%	66,3%	70,6%	74,5%	Low
	Form Index	27,37	24,75	21,63	26,05	25,13	20,53	27,40	23,73	20,73	Low
	Area >Tmax	1454	1874	1734	2146	1928	1782	2299	2066	1834	Medium
	Total Retention	67,7%	65,0%	63,1%	73,1%	65,7%	72,1%	71,6%	76,3%	74,3%	Medium
RS DRAIN	Form Index	25,9	34,5	35,9	26,1	29,5	28,0	24,6	23,8	26,8	Low
	Ash Content	24,5%	20,5%	21,9%	26,5%	23,9%		26,7%	27,9%		Very Low
	D2TM	2	6	7	4	5	5	2	3	8	Low
RS FBRM	D4TM	3,5	4,5	5,5	3	3,5	4		4,5	6,5	Very Low
Good drainage and formation Good retention											
	Monash, 16 th August 2018										

Case 3 Wet end audit- Optimization of costs											۲
Trials	Variable	[RSA			RS B			RS C		Errors
31/05/2004	Dosage	Low	Medium	High	Low	Medium	High	Low	Medium	High	
	Drain Time	62	20	18	53	25	25	40	22	25	Medium
RS DD.I	Turbidity	4558	5105	3885	4485	4185	2932	3788	4800	3352	Verv Low
	Drainage Time	4.86	5.53	4.45	4.99	4.54	3.64	4.79	4.05	4.84	Low
RS DDA	Turbidity	1808	1580	1638	1550	1623	1448	1543	1502	722	Low
	Turbidity	4130	3077	2548	2835	2327	1458	2689	2452	2068	Very Low
	Retention	67,0%	69,0%	70,0%	70,4%	74,2%	78.2%	70,0%	73,8%	75,5%	Low
	Form Index	32,4	29,87	26,2	32,3	27,97	24,73	32,2	27,87	26,5	Low
RS RET	Ash Retention	26,2%	28,9%	31,1%	29,5%	35,2%	41.0%	31,5%	35,0%	38,2%	Very Low
	Area >Tmax	2487	2525	2119	3064	2792	2553	2920	2658	2497	Medium
	Total Retention	74,3%	76,4%	78,6%	74,0%	73,8%	81.2%	76,8%	75,9%	81.1%	Low
	Form Index	28,63	27,5	23,55	34,4	30,4	24,3	31,27	30,57	27.43	Low
	Ash Retention	66,3%	71,7%	72,7%	56,6%	63,7%	80,4%	70,5%	73,8%	83.9%	Low
RS FBRM	D4TM	1,6	2,1	2,9	1,7	2	3	1,7	2,2	4	Very Low
							1			1	
								Goo	d resu	lts	
							A co	ost sti	ıdy is	requi	red
								Mona	sh , 16 th A	August 2	018 61

